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Robbie van Aert, Tilburg University: 

I am lucky, because I work primarily with 

simulated data mainly for applying 

methods in the social sciences. 



Something about myself…

• Recently finished my PhD thesis on meta-analysis and publication 

bias methods

• Now: Postdoc at Tilburg University working on meta-analysis and 

publication bias methods

• Meta Research Center: www.metaresearch.nl
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Overview

1. Introduction to meta-analysis

Lunch break!

2. Introduction to publication bias

3. Publication bias methods

4. Practical part

5. Wrap-up/Conclusions
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1. Meta-analysis

• Information explosion: more and more studies get published

• It becomes more and more difficult to keep up with reading all the 

relevant literature

• Methods are needed to summarize research findings, and to give an 

objective overview

• But how to do this?!
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1. Meta-analysis: Some history

• Prior to 1990s: Narrative literature review where a expert reads the 

literature and answers a research question

• Drawbacks of narrative literature reviews:

– Subjective

– Lack of transparency

– Hard to update if new information becomes available

• Vote counting: # significant results vs. # nonsignificant results
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1. Meta-analysis: Some history

• Now: Systematic review and meta-analysis

• Systematic review: clear set of rules that are specified in advance 

with respect to inclusion or exclusion of studies

• Meta-analysis: “the statistical synthesis of the data from separate 

but similar studies leading to a quantitative summary” (Last, 2001)

• Goals of meta-analysis:

– Estimating average effect size (and between-study variance)

– Examine whether differences in effect sizes are caused by 

study characteristics
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1. Meta-analysis

• Number of published meta-analyses increases:
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1. Meta-analysis: Stages

I. Formulating a problem/research question

II. Literature search

III. Extracting information from literature

IV. Data preparation (converting effect sizes)

V. Combining effect sizes (meta-analysis)

VI. Interpretation and sensitivity analysis

VII. Presentation of results

11

Books on how to do a systematic review:

• Cooper et al., (2009). The handbook 

of research synthesis and meta-

analysis

• Cooper (2010). Research synthesis 

and meta-analysis: A step-by-step 

approach



1. Meta-analysis: Models

• Meta-analysis is a weighted average of studies’ effect sizes

• Two types of meta-analysis models: fixed-effect (or common-effect) 

and random-effects

• Fixed-effect: inference on the studies included in the meta-analysis

• Random-effects: studies are sample of a population of studies and 

we want to generalize results to this population

• Theoretical arguments should motivate model selection!
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1. Meta-analysis: Fixed-effect
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1. Meta-analysis: Fixed-effect
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1. Meta-analysis: Fixed-effect
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1. Meta-analysis: Fixed-effect

• All studies estimate the same population effect size θ

• Model: 𝑦𝑖 = 𝜃 + 𝜀𝑖 with 𝜀𝑖~ 𝑁 0, 𝜎𝑖
2

• Parameter estimate:  𝜃 =
 𝑤𝑖𝑦𝑖

 𝑤𝑖
with 𝑤𝑖 =

1

𝜎𝑖
2 and Var[  𝜃] = 

1

 𝑤𝑖

• Inference: 𝑧 =
 𝜃

𝑉𝑎𝑟[ 𝜃]

and  𝜃 ± 1.96 𝑉𝑎𝑟[  𝜃]
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1. Meta-analysis: Random-effects
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1. Meta-analysis: Random-effects
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1. Meta-analysis: Random-effects
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1. Meta-analysis: Random-effects
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1. Meta-analysis: Random-effects

• Studies’ effect sizes are sampled form a population of effects with 

mean μ and variance τ2

𝜃𝑖

• Model: 𝑦𝑖 = 𝜇 + 𝜇𝑖 + 𝜀𝑖 with 𝜀𝑖~ 𝑁 0, 𝜎𝑖
2 and 𝑢𝑖~𝑁(0, 𝜏2)

• Parameter estimate:  𝜇 =
 𝑤𝑖𝑦𝑖

 𝑤𝑖
with 𝑤𝑖 =

1

𝜎𝑖
2+ 𝜏2 and Var[  𝜇] = 

1

 𝑤𝑖

• Inference: 𝑧 =
 𝜇

𝑉𝑎𝑟[ 𝜇]
and  𝜇 ± 1.96 𝑉𝑎𝑟[  𝜇]
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1. Meta-analysis: Example

• Meta-analysis on psi a.k.a. extrasensory perception

• Psi denotes “anomalous processes of information or energy transfer 

that are currently unexplained in terms of known physical or 

biological mechanisms” (Bem, 2011)

• Paper by Bem (2011) contains 9 experiments with 8 of them yielding 

significant results in favor of psi

22



1. Meta-analysis: Example

• Example of an experiment by Bem (2011):

23



1. Meta-analysis: Example

• Example of an experiment by Bem (2011):

• Future position of erotic picture was more frequently correctly 
identified: 53.1%, t(99) = 2.51, p = .01, d = 0.25 
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1. Meta-analysis: Example

• Multiple studies were conducted and both the existence and 

absence of psi was found

• Random-effects meta-analysis based on 90 studies:  𝜇 = 0.09, 

z=6.40, p < .001

• Conclusion: Psi does really exist, and we can really look into the 

future

• Or… is this meta-analysis biased because of, for instance, 

publication bias and questionable research practices?
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1. Meta-analysis: Meta-regression

• Heterogeneity or between-study variance in true effect size implies 
that the primary studies’ true effect size differ (so 𝜏2 > 0)

• This heterogeneity can be attributed to random or systematic 
differences between the true effect sizes

• Systematic differences:

– Methodological differences between primary studies

– Differences in the studied population

– Differences in the length of a treatment

• Characteristics of primary studies can be included in the model to 
explain this between-study variance
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1. Meta-analysis: Meta-regression

• Fixed-effects with moderators model:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + … + 𝛽𝑝𝑥𝑝𝑖 + 𝜀𝑖

• Mixed-effects model:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + … + 𝛽𝑝𝑥𝑝𝑖 + 𝜇𝑖 + 𝜀𝑖

• 𝜏2 is also estimated in mixed-effects model now referring to the 

amount of residual between-study variance after including the 

moderators in the model

27



1. Meta-analysis: Meta-regression

• Meta-regression may reveal interesting relationships among the 

variables

• However, one cannot make causal statements about these 

relationships  observational study instead of experiment

• Meta-regression used for hypothesis generating  relationships 

among variables should be studied in a new experiment or RCT

28



1. Meta-analysis: Quantifying heterogeneity

• Many estimators exist for estimating 𝜏2:

– DerSimonian and Laird is most often used

– Restricted maximum likelihood and Paule-Mandel are nowadays 
recommended

• Estimates of 𝜏2 are imprecise if the meta-analysis contains a small 
number of effect sizes

• Q-profile and generalized Q-statistic method can be used for computing 
confidence interval around  𝜏2

• Drawback of  𝜏2
 cannot be used for comparing the amount of 

heterogeneity across meta-analyses

29



1. Meta-analysis: Quantifying heterogeneity

• For that reason, the I2-statistic was proposed:

𝐼2 =
 𝜏2

 𝜏2 + 𝑠2

where s2 is an estimate of the “typical within-study variance”

• The I2-statistic computes the proportion of total variance that can be 
attributed to between-study variance

• The I2-statistic ranges from 0 to 1 (0.25 low, 0.5 medium, 0.75 large)

• Q-profile and generalized Q-statistic method can also be used for 
constructing a confidence interval around the I2-statistic
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1. Meta-analysis: Software

• R (metafor and meta packages)

• STATA: metan() command

• SPSS: not included, but macros can be used

• SAS: SAS PROC MEANS program

• Comprehensive Meta-analysis Software (CMA)

• Excel (add in MetaEasy)

• RevMan from Cochrane Collaboration

• MetaWin

• Multilevel software

• …

31



1. Meta-analysis: Other models

• Meta-Analytic Structural Equation Modelling (MASEM)

• Multivariate meta-analysis

• Network meta-analysis

• Multilevel meta-analysis

• Individual patient/participant data (IPD) analysis

• Bayesian statistics

32



1. Meta-analysis: Criticism

• Meta-analysis is an exercise of mega-silliness (Eysenck, 1978)

• Meta-analysis is statistical alchemy for the 21st century (Feinstein, 

1995)

Main criticisms:

• Mixing apples and oranges

• Garbage in, garbage out

• Publication bias invalidates meta-analysis

33



Concluding remarks

Take-home message 1:

• Meta-analysis is a powerful tool to aggregate findings from different 

studies

• Quality of the data determines the quality of the meta-analysis

• Theoretical arguments should motivate model selection (FE or RE)

• Explaining heterogeneity/between-study variance  no causal 

statements

34



Lunch break!
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2. Publication bias

• A video: https://www.youtube.com/watch?v=iC_1WpZOLE8

• This was Slade Manning playing with ping pong balls

– A 3 minutes video based on 3 (!) years playing

– Some tricks needed 5,000 attempts

• Slade Manning about the video:

“I didn’t really have any skill or control, so it was just a matter of hitting 
balls over and over until one finally happened to go the right distance and 
direction.”

• Conclusion: What you see is not all what happened  this also holds 
for science, but it will not be as bad as in the video

36
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2. Publication bias

• Publication bias is “the selective publication of studies with a 

statistically significant outcome”

• Longer history in dealing with publication bias in medical research 

than social sciences

• Nowadays, increased attention for publication bias in various fields

37



Adapted from Fanelli (2010)

2. Publication bias: Evidence

• Evidence for publication bias is overwhelming

• 95% of published articles contain

significant results in psychology

• But this is not in line with average

statistical power is (about 20-50%)

• Assuming power is 50%  only 

1 out of 40 nonsignificant results

get published

38



2. Publication bias: Evidence

• Fanelli (2012) studied percentage of significant results in literature 

between 1990-2007 across disciplines

• Increase in significant results from 70.2% (1990) to 85.9% in (2007)

39



2. Publication bias: Evidence

• Coursol and Wagner (1986) surveyed researchers on the effects of 

positive findings

40



2. Publication bias: Evidence

• Coursol and Wagner (1986) surveyed researchers on the effects of 

positive findings
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2. Publication bias: Evidence

• Coursol and Wagner (1986) surveyed researchers on the effects of 

positive findings
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2. Publication bias: Evidence

43

• Open Science Collaboration initiated Reproducibility Project which 

was a large-scale replication attempt of psychological research

• 100 studies were replicated from three flagship journals: JPSP, 

Psychological Science, and Journal of Experimental Psychology

• Results shocked many people inside and outside academia:

– 97% of original studies were significant and only 36% of 

replications

– Effect size estimates decreased from r=0.4 to 0.2



2. Publication bias: Evidence

44



2. Publication bias: Evidence

• Experimental economics: 89% of original studies were significant 

and 69% of replications

• Hematology and oncology: 11% of studies were deemed to be 

successfully replicated

• Substantial amount of critique on these projects

• Two possible causes of this low replicability:

– Publication bias

– Questionable research practices

45



2. Publication bias: Consequences

• What do you think are consequences of publication bias? Why is 
publication bias detrimental for science?

• Three consequences:

– Type-I errors  False impression that an effect exists

– Overestimation of effect size

– Questionable research practices

46



3. Publication bias methods

• Multiple methods have been developed to examine publication bias

• Methods to assess publication bias:

– Failsafe N

– Funnel plot

– Egger’s test

– Rank-correlation test

– p-uniform’s publication bias test

• Methods to correct effect size estimates:

– Trim-and-fill method

– Selection models

– p-uniform and p-curve

– PET-PEESE

47



3. Publication bias methods: Example

• Meta-analysis by Rabelo et al. (2015) on the effect of weight on 

judgments of importance

• Theory: the physical experience of weight influences how much 

importance people assigns to things, issues, and people

• Meta-analysis based on 25 studies:  𝜇 = 0.571,  𝜏2 = 0, 95% CI (0.468; 

0.673), z = 10.904, p < .001

48



3. Failsafe N

• Unpublished studies are hidden in the file drawers of researchers

• Failsafe N computes number of effect sizes with θ = 0 that need to be 
retrieved before the meta-analytic estimate is no longer significantly 
different from zero

• Well-known and popular method, but discouraged to be used

• Drawbacks of Failsafe N

– Focus on statistical rather than substantive significance

– Effect size of hidden studies is assumed to be zero

• 1098 (!) effect sizes with θ = 0 are needed in example

49



3. Funnel plot

50

• Funnel plot shows 

relationship between effect 

size and its precision

• An asymmetric funnel 

suggests the presence of 

small-study effects

• Eyeballing a funnel plot is 

unreliable, so tests were 

developed



3. Funnel plot
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• Funnel plot shows 

relationship between effect 

size and its precision

• An asymmetric funnel 

suggests the presence of 

small-study effects

• Eyeballing a funnel plot is 

unreliable, so tests were 

developed



3. Funnel plot asymmetry tests

• Two most often used tests for funnel plot asymmetry are rank-

correlation test and Egger’s test

• Rank-correlation test ranks the effect size and standard error and 

then computes the correlation between these ranks (τ=0.6, p<.0001)
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3. Funnel plot asymmetry tests

53

• Egger’s test fits a 

regression line through the 

points in a funnel plot

• Vertical line suggests a 

symmetric funnel

• If slope is significantly 

different from zero 

funnel plot asymmetry

• z = 1.629, p = .103



3. Funnel plot asymmetry tests

• Two most often used tests for funnel plot asymmetry are rank-

correlation test and Egger’s test

• Rank-correlation test ranks the effect size and standard error and then 

computes the correlation between these ranks (τ=0.6, p<.0001)

• Drawbacks of these tests:

– Low statistical power and are recommended not to be used with 

only 10 effect sizes

– Test small-study effects and not publication bias

• Low power, so is it not better to correct estimates for publication bias?!

54



3. Trim-and-fill method

55

• Popular method to correct 
effect size estimate

• Missing effect sizes from 
one side of funnel plot are 
“trimmed” and “filled” in other 
side

• Method is discouraged to be 
used due to misleading 
results (Terrin et al., 2003)

•  𝜇 = 0.571 and after imputing 
nine studies 0.521 (p<.0001)



3. Selection models

• Selection model approaches combine effect size and selection model

– Effect size model: Distribution of effect size

– Selection model: Mechanism that determines which studies are 

observed

• Very many different selection model approaches exist

• Some selection models estimate selection model whereas others 

assume that selection model is known

• Not often used in practice, because sophisticated assumptions have 

to be made and convergence problems may arise
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3. Selection models

• Hardly any user-friendly software exist for applying selection model 

approaches

• R package “weightr” exists to apply the Vevea & Hedges weight-

function model

• Applying weight-function model to example:  𝜇 = 0.571 vs. 0.266 

(p=.0002)

• Promising method  good statistical properties in recent simulation 

studies (Carter et al., 2017; McShane et al., 2016)
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3. PET-PEESE

58

• Estimate equals the effect 
size where standard error is 
zero (infinite sample size)

• Performance of PET-PEESE 
is topic of further study

• Limitation: Studies’ sample 
size should be different from 
each other

• Estimate is  𝜇 = 0.571 vs. 
0.066 (p=.472)



3. p-uniform (and p-curve)

• [Robbie adds disclaimer]

• Both methods are based on the same methodology, but slightly 

differ in implementation

• Methods use the probability of observing a particular effect size 

conditional on the effect size being statistically significant

59



How are one-tailed p-values, 𝑃 𝑦 ≥ 𝑦𝑖; 𝜃 = 0 , distributed computed 

from a random sample of N(0.2, 0.04)?

3. p-uniform (and p-curve)
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3. p-uniform (and p-curve)
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How are one-tailed p-values, 𝑃 𝑦 ≥ 𝑦𝑖; 𝜃 = 0 , distributed computed 

from a random sample of N(0, 0.04)?



3. p-uniform (and p-curve)
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How are one-tailed p-values at the true effect size 𝜃 = 0.2, 𝑃(𝑦 ≥ 𝑦𝑖; 𝜃 =



3. p-uniform (and p-curve)

• Both methods are based on the same methodology, but slightly 

differ in implementation

• Methods use the probability of observing a particular effect size 

conditional on the effect size being statistically significant

• Statistical principle: p-values are not only uniformly distributed under 

the null hypothesis, but also at the true effect size

• Methods discard nonsignificant effect sizes

63



3. p-uniform (and p-curve)

• Conditional p-values are computed with:

𝑃(𝑦 ≥ 𝑦𝑖; 𝜃)

𝑃(𝑦 ≥ 𝑦𝑐𝑣; 𝜃)

where 𝑦𝑐𝑣 denotes the critical value (effect size)

• Effect size estimate is obtained when these conditional p-values are 
uniformly distributed

• Assumptions of the methods:

– Significant effect sizes have equal probability of getting published

– Effect sizes are statistically independent

• Note: Both methods take sampling variance in primary studies into 
account and are not solely based on the (conditional) p-values
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3. p-uniform (and p-curve)

65

• Example with three observed effect sizes (δ=0.5):

t(48)=3.133, p=.0029 t(48)=2.302, p=.011 t(48)=2.646, p=.025



3. p-uniform (and p-curve)
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3. p-uniform (and p-curve)
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• Example with three observed effect sizes (δ=0.5):

t(48)=3.133, p=.0029 t(48)=2.302, p=.011 t(48)=2.646, p=.025



3. p-uniform (and p-curve)

• Effect size estimate is… 

– < 0 if p > .025

– 0 if p = .025

– > 0 if p < .025

• p-uniform has some advantages over p-curve (van Aert et al., 2016):

– Effect size can always be estimated

– Estimation of a confidence interval

– Publication bias test

• Limitations: 

– Overestimation caused by moderate to large between-study 
heterogeneity

– Unpredictable bias in effect size estimates caused by p-
hacking/QRPs

68



3. p-uniform (and p-curve): Heterogeneity

• Simonsohn et al. (2014) state that p-curve (and p-uniform) yield an 

accurate estimate if heterogeneity is present

• Simulation study with two-independent groups design and δ=0.397

69



3. p-uniform (and p-curve): Heterogeneity

70

No Moderate Large Larger Very large

p-curve .393 .530 .703 .856 1.094

p-uniform .387 .522 .679 .776 .903

FE .553 .616 .738 .875 1.104

RE .553 .616 .743 .897 1.185

• Recommendation:

– At most moderate: interpret as average true effect size

– More than moderate: interpret as estimate of only the 

significant studies

– If possible, create homogeneous subgroups of studies



3. p-uniform (and p-curve): Heterogeneity

• Simonsohn et al. (2014) state that p-curve (and p-uniform) yield an 

accurate estimate if heterogeneity is present

• Simulation study with two-independent groups design and δ=0.397

• We are now working on p-uniform* which also includes

nonsignificant effect sizes to deal with heterogeneity

• P-uniform* estimates both the average effect size and the between-

study variance
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3. p-uniform (and p-curve): p-hacking

• P-hacking (or QRPs) is a term for all behaviors that researchers can 

use to obtain desirable results

• If p-hacking would always result in p-values just below the α-level

the methods will underestimate the true effect size

• Simulation study with p-hacking:

– Optional stopping

– Only reporting the first significant dependent variable

– Only reporting the most significant dependent variable

72



3. p-uniform (and p-curve): p-hacking

73

• Recommendation:

– Be reluctant with interpreting the methods’ results in case of 

indications of p-hacking



3. p-uniform (and p-curve): Conclusion

• P-uniform and p-curve are promising tools, but also have their limitations

• P-uniform*, hopefully, accurately estimates effect size and between-study 
variance if heterogeneity is present  results look promising!

Software: 

• P-curve:

– R Code available in Simonsohn et al. (2014) 

– Web application: http://p-curve.com/

• P-uniform:

– R package “puniform”: https://github.com/RobbievanAert/puniform

– Web application: https://rvanaert.shinyapps.io/p-uniform

74
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4. Practical part

• Assignment: 

1. Inspect the data of meta-analysis by Rabelo et al. (2015) with 

a spreadsheet program (https://goo.gl/E67gMr): 

» How many significant effect sizes?

» What is the (unweighted) mean of the effect sizes?

» What estimate of p-uniform do you expect based on the 

p-values?

2. Download CSV file of data (https://goo.gl/X8A3Hh), go to 

https://rvanaert.shinyapps.io/p-uniform, and analyze data with 

p-uniform

3. Interpret the results, was your expected effect size close to p-

uniform’s estimate?

78
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4. Practical part

79

• m1i and m2i: Sample means group 1 and 2

• n1i and n2i: Sample size group 1 and 2

• sd1i and sd2i: Standard deviation group 1 and 2

• tobs: Observed t-value

• pval: Two-tailed p-value

• yi: Observed standardized effect size (Hedges’ g)

• vi: Sampling variance of yi



Concluding remarks

Take-home message 2:

• Publication bias is a major threat to the validity of meta-analyses 

that causes overestimation in effect size

• Each publication bias method has its own advantages and 

disadvantages, so use and report multiple methods (triangulation)

• Keep an eye on the development of PET-PEESE, selection model 

approaches, and p-uniform* (and p-curve)
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Psi meta-analysis

• Does psi really exist?!; Publication bias in the psi meta-analysis?

• Multitude of publication bias methods was applied  no convincing 

evidence for the presence of publication bias

• Or…

– Characteristics of the data do not suit publication bias methods

– QRPs/p-hacking may be used in the primary studies

– …

• Large scale preregistered replication is conducted to study psi

81



5. Wrap-up/final conclusions

Take-home message:

• Meta-analysis is a powerful tool to aggregate findings from different 
studies

• Quality of the data determines the quality of the meta-analysis

• Publication bias is a major threat to the validity of meta-analyses that 
causes overestimation in effect size

• Each publication bias method has its own advantages and 
disadvantages, so use and report multiple methods (triangulation)
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Further reading

• General books on systematic reviews and meta-analysis:

– Cooper et al., (2009). The handbook of research synthesis and meta-analysis

– Cooper (2010). Research synthesis and meta-analysis: A step-by-step approach

– Borenstein et al. (2009). Introduction to meta-analysis

• Difference between fixed-effect and random-effects models:

– Borenstein et al. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis

• Overview of publication bias methods:

– Jin et al. (2014). Statistical methods for dealing with publication bias in meta-analysis

– Rothstein et al. (2005). Publication bias in meta-analysis: Prevention, assessment and adjustments

• P-uniform and p-curve:

– van Assen et al. (2015). Meta-analysis using effect size distributions of only statistically significant 
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