Meta-analyzing non-preregistered and preregistered studies

Robbie C.M. van Aert

September 14, 2024

Preregistered studies and meta-analysis

 More and more preregistered studies in psychology (and other fields)

 Preregistered studies are less likely to be affected by publication bias

Figure adapted from Nosek et al. (2022)

Preregistered studies and meta-analysis

 More and more preregistered studies in psychology (and other fields)

 Preregistered studies are less likely to be affected by publication bias

Figure adapted from Nosek et al. (2022)

Question:

How to meta-analyze data that contain non-preregistered and preregistered studies?

Potential analysis approaches

- 1. Ignoring possible publication bias in non-preregistered studies
- 2. Ignoring that preregistered studies may be less affected by publication bias
- 3. Discarding all non-preregistered studies
- 4. Including type of study in a meta-regression analysis

Potential analysis approaches

- 1. Ignoring possible publication bias in non-preregistered studies
- 2. Ignoring that preregistered studies may be less affected by publication bias
- 3. Discarding all non-preregistered studies
- 4. Including type of study in a meta-regression analysis
- Applying the Hybrid Extended Meta-Analysis (HYEMA) method that treats preregistered and non-preregistered studies differently

Working example: Introduction

- Money priming is the effect that people behave in a more self-sufficient way if they receive a money-related manipulation
- Lodder et al. (2019) meta-analyzed 236 studies on money priming
- Effect size measure of interest is Hedges' g
- ▶ Meta-analysis consists of 47 (19.9%) preregistered studies
- 57.7% of the non-preregistered and 6.4% of the preregistered studies are statistically significant

Working example: Funnel plots

0 Results RE MA: Results RF MA: 0 û=0.402 (0.031) û=0.008 (0.020) CI=(0.342; 0.463) CI = (-0.031; 0.046)z=13.098, p<.001 z=0.396, p=.692 0.119 **Results Egger's test:** 0.119 **Results Egger's test:** z=9.892, p<.001 z=1.272, p=.203 Standard Error Standard Error 0.238 0.238 0.356 0.356 0.475 0.475 2 3 2 -1 0 -1 0

Non-preregistered studies

Hedges' g

Preregistered studies

Hedges' g

Working example: Forest plot

HYEMA

- HYEMA treats non-preregistered and preregistered studies differently by using distinct likelihood functions
- Likelihood function of *non-preregistered* studies:
 - PDF of truncated normal distribution
 - Density of a study conditional on being (non)significant
 - Density is computed differently depending on significance
- \blacktriangleright Correction for publication bias in non-preregistered studies \rightarrow significance is likely a criterion for publication

HYEMA

- HYEMA treats non-preregistered and preregistered studies differently by using distinct likelihood functions
- Likelihood function of *non-preregistered* studies:
 - PDF of truncated normal distribution
 - Density of a study conditional on being (non)significant
 - Density is computed differently depending on significance
- \blacktriangleright Correction for publication bias in non-preregistered studies \rightarrow significance is likely a criterion for publication
- Likelihood function of preregistered studies:
 - PDF of normal distribution
 - Assumption of no bias in preregistered studies

HYEMA and its relation to other methods

- Ratio of preregistered studies determines the similarity between results of HYEMA and traditional meta-analysis:
 - Only preregistered studies \rightarrow results coincide
 - ► Only non-preregistered studies → results differ the most if publication bias is present
- HYEMA is related to the hybrid method (van Aert et al., 2018) and selection models (Hedges, 1984; Iyengar et al., 1988; van Aert et al., 2024)

Working example: Results

Average effect size:

	$\hat{\mu}$ (SE)	(95% CI)	H ₀ : μ=0
RE MA	0.319 (0.026)	(0.267;0.370)	z=12.133, p<.001
PET-PEESE	-0.211 (0.042)	(-0.293;-0.129)	t(234)=-5.080, p<.001
HYEMA	0.176 (0.032)	(0.112;0.239)	z=5.435, p<.001

Average effect size:

	$\hat{\mu}$ (SE)	(95% CI)	H ₀ : μ=0
RE MA	0.319 (0.026)	(0.267;0.370)	z=12.133, p<.001
PET-PEESE	-0.211 (0.042)	(-0.293;-0.129)	t(234)=-5.080, p<.001
HYEMA	0.176 (0.032)	(0.112;0.239)	z=5.435, p<.001

Between-study variance:

	$\hat{ au}^2$ (SE)	(95% CI)	$\hat{\tau}$	H ₀ : $\tau^2=0$
RE MA	0.118 (0.015)	(0.102;0.171)	0.344	Q(235)=1022.133, p<.001
HYEMA	0.080 (0.012)	(0.059;0.107)	0.283	LR=233.900, p<.001

Simulation study: Design

- Hedges' g effect sizes were simulated under the random-effects model
- Preregistered and significant non-preregistered studies were always published
- Nonsignificant non-preregistered studies were published with probability 1 − pub → pub = 0; 0.5; 0.9; 1
- Simulation study was tailored to the working example:
 - $\mu = 0.319$; $\tau^2 = 0.118 \rightarrow$ random-effects model
 - $\mu = 0.176; \ \tau^2 = 0.080 \rightarrow \mathsf{HYEMA}$
 - Number of preregistered and non-preregistered studies equal to observed in meta-analysis
- Outcomes were bias, RMSE, and Type-I error/power

Simulation study: Results

 Numbers in bold indicate the method with the least bias or lowest RMSE

			Bias μ			RMSE μ		
μ	τ^2	pub	RE MA	PET-PEESE	HYEMA	RE MA	PET-PEESE	HYEMA
		0	-0.000	-0.004	0.000	0.026	0.083	0.037
0.210	0 1 1 0	0.5	0.083	0.044	0.000	0.087	0.092	0.037
0.319 0.118	0.118	0.9	0.229	0.083	0.001	0.230	0.112	0.042
		1	0.293	0.086	0.002	0.294	0.114	0.048
		0	-0 000	-0.010	0.000	0 023	0.080	0 030
0.176 0.	0.080	05	0.068	0.010	0.000	0.023	0.000	0.030
		0.9	0.000	0.098	0.000	0.072	0.126	0.031
		1	0.335	0.087	0.002	0.335	0.132	0.043

 Conclusion: HYEMA has the lowest bias and least RMSE when publication bias is present

Simulation study: Results estimating τ^2

			Bias $ au^2$		RMSE τ^2	
μ	τ^2	pub	RE MA	HYEMA	RE MA	HYEMA
0.319		0	-0.001	-0.001	0.015	0.015
	0.118	0.5	-0.001	-0.001	0.015	0.015
		0.9	-0.026	-0.001	0.030	0.017
		1	-0.046	-0.001	0.048	0.018
0.176		0	-0.001	-0.001	0.011	0.012
	0 000	0.5	0.008	-0.001	0.014	0.011
	0.080	0.9	-0.000	-0.001	0.012	0.011
		1	-0.023	-0.001	0.025	0.013

Conclusion: Performance is comparable except for conditions with extreme publication bias

Simulation study: Results testing $H_0: \mu = 0$

▶ Numbers in bold indicate the method that has a Type-I error rate closest to $\alpha = 0.05$

μ	τ^2	pub	RE MA	PET-PEESE	HYEMA
0	0.118	0 0.5 0.9 1.0	0.052 0.656 1.000 1.000	0.366 0.487 0.649 0.530	0.052 0.051 0.052 0.056
0	0.080	0 0.5 0.9 1.0	0.049 0.554 1.000 1.000	0.347 0.464 0.649 0.458	0.048 0.054 0.051 0.054

Conclusion:

- Type-I error rate is adequately controlled by HYEMA
- Statistical power of HYEMA was close to 1 for all conditions

Discussion

- HYEMA seems to be a useful sensitivity analysis if preregistered studies are available
- Results can be considered not robust if, for example,
 - A significant effect is observed in the meta-analysis but not with HYEMA
 - There is a strong decrease in effect size estimate
- ► Also classifying replications as less likely to be biased than non-preregistered studies → extra sensitivity analysis?!
- Moderator variables can be included in HYEMA

Software:

- ► Web application: https://rcmvanaert.shinyapps.io/HYEMA/
- hybrid() function in the puniform R package

Illustration hybrid() function

```
install.packages("puniform") # Install puniform package
library(puniform) # Load puniform package
hybrid(yi = yi, vi = vi, conventional = conventional, side = "right")
##
## Results Hybrid method (k = 236; number conventional studies = 189)
##
## Model results Hybrid method:
##
##
      est se ci.lb ci.ub zval pval
##
   0.1758 0.0323 0.1124 0.2392 5.4355 <.001
##
## ===
##
## Estimating between-study variance:
##
##
     tau2 se tau2.1b tau2.ub LR pval
##
   0.0802 0.0120 0.0594 0.1069 233.8997 <.001
```

Illustration hybrid() function

```
install.packages("puniform") # Install puniform package
library(puniform) # Load puniform package
hybrid(yi = yi, vi = vi, conventional = conventional, side = "right")
##
## Results Hybrid method (k = 236; number conventional studies = 189)
##
## Model results Hybrid method:
##
##
      est se ci.lb ci.ub zval pval
##
   0.1758 0.0323 0.1124 0.2392 5.4355 <.001
##
## ===
##
## Estimating between-study variance:
##
##
     tau2 se tau2.1b tau2.ub LR pval
##
   0.0802 0.0120 0.0594 0.1069 233.8997 <.001
 Including moderators:
hybrid(yi = yi, vi = vi, conventional = conventional, side = "right",
      mods = -x
```

15

Limitations/future research

- Simulations tailored to example(s)
- Only PET-PEESE was included in the simulations
- P-hacking may affect the performance of HYEMA
- Preregistered studies may also be biased
 - Omit preregistered studies that are suspected to be biased
 - Risk-of-bias assessment
- Examining properties of PET-PEESE with interaction term (Stanley et al., 2012; Stanley et al., 2014) and extending selection model approaches

Thank you for your attention

www.robbievanaert.com

www.metaresearch.nl

Preprint:

van Aert, R. C. M. (2024). Meta-analyzing non-preregistered and preregistered studies. Manuscript submitted for publication. doi: 10.31222/osf.io/2bj85

- Hedges, L. V. (1984). Estimation of effect size under nonrandom sampling: The effects of censoring studies yielding statistically insignificant mean differences. Journal of Educational Statistics, 9(1), 61–85.
- Iyengar, S., & Greenhouse, J. B. (1988). Selection models and the file drawer problem: Rejoinder. Statistical Science, 3(1), 133–135.
- Lodder, P., Ong, H. H., Grasman, R. P. P. P., & Wicherts, J. M. (2019). A comprehensive meta-analysis of money priming. Journal of Experimental Psychology: General, 148(4), 688–712. https://doi.org/10.1037/xge0000570
- Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Dreber, A., Fidler, F., Hilgard, J., Kline Struhl, M., Nuijten, M. B., Rohrer, J. M., Romero, F., Scheel, A. M., Schrer, L. D., Schönbrodt, F. D., & Vazire, S. (2022). Replicability, robustness, and reproducibility in psychological science. *Annual Review of Psychology*, 73(1), 719–748. https://doi.org/10.1146/annurev-psych-020821-114157
- Stanley, T. D., & Doucouliagos, H. (2012). Meta-regression analysis in economics and business. Routledge.
- Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce publication selection bias. Research Synthesis Methods, 5(1), 60–78. https://doi.org/10.1002/jrsm.1095
- van Aert, R. C. M., & van Assen, M. A. L. M. (2018). Examining reproducibility in psychology: A hybrid method for combining a statistically significant original study and a replication. *Behavior Research Methods*, 50(4), 1515–1539. https://doi.org/10.3758/s13428-017-0967-6
- van Aert, R. C. M., & van Assen, M. A. L. M. (2024). Correcting for publication bias in a meta-analysis with the p-uniform* method. Manuscript submitted for publication. https://doi.org/10.31222/osf.io/zqjr9

Likelihood function non-preregistered study

$$L_{C}(\mu,\tau^{2};y_{i},\sigma_{i}^{2},y_{i}^{cv}) = \begin{cases} \frac{1}{\sqrt{\sigma_{i}^{2}+\tau^{2}}}\phi\left(\frac{y_{i}-\mu}{\sqrt{\sigma_{i}^{2}+\tau^{2}}}\right) & \text{if } p_{i} \leq \alpha\\ \frac{1-\Phi\left(\frac{y_{i}^{cv}-\mu}{\sqrt{\sigma_{i}^{2}+\tau^{2}}}\right)}{\sqrt{\sigma_{i}^{2}+\tau^{2}}} & \frac{1}{\sqrt{\sigma_{i}^{2}+\tau^{2}}}\phi\left(\frac{y_{i}-\mu}{\sqrt{\sigma_{i}^{2}+\tau^{2}}}\right)\\ \frac{\Phi\left(\frac{y_{i}^{cv}-\mu}{\sqrt{\sigma_{i}^{2}+\tau^{2}}}\right) & \text{if } p_{i} > \alpha \end{cases}$$

- y_i: observed effect size estimate
- σ_i^2 : within-study sampling variance
- > y_i^{CV} : critical value
- ϕ : PDF of standard normal distribution
- Φ: CDF of standard normal distribution
- *p_i*: right-tailed *p*-value

Likelihood functions

Likelihood function of preregistered study:

$$L_P(\mu,\tau^2;y_i,\sigma_i^2) = \frac{1}{\sqrt{\sigma_i^2 + \tau^2}} \phi\Big(\frac{y_i - \mu}{\sqrt{\sigma_i^2 + \tau^2}}\Big).$$

Combined likelihood function:

$$\prod_{i=1}^{k} \left(L_{\mathcal{C}}(\mu, \tau^{2}; y_{i}, \sigma_{i}^{2}, y_{i}^{cv}) \times \mathbb{1}_{i} + L_{\mathcal{P}}(\mu, \tau^{2}; y_{i}, \sigma_{i}^{2}) \times (1 - \mathbb{1}_{i}) \right),$$

1_i: indicator function that is 1 for a non-preregistered study and 0 for a preregistered study