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Preregistered studies and meta-analysis

▶ More and more preregistered studies
in psychology (and other fields)

▶ Preregistered studies are less likely
to be affected by publication bias

Figure adapted from Nosek et al. (2022)

Question:

How to meta-analyze data that contain non-preregistered and
preregistered studies?
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Potential analysis approaches

1. Ignoring possible publication bias in non-preregistered studies

2. Ignoring that preregistered studies may be less affected by
publication bias

3. Discarding all non-preregistered studies

4. Including type of study in a meta-regression analysis

5. Applying the Hybrid Extended Meta-Analysis (HYEMA)
method that treats preregistered and non-preregistered studies
differently
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Working example: Introduction

▶ Money priming is the effect that people behave in a more
self-sufficient way if they receive a money-related manipulation

▶ Lodder et al. (2019) meta-analyzed 236 studies on money
priming

▶ Effect size measure of interest is Hedges’ g

▶ Meta-analysis consists of 47 (19.9%) preregistered studies

▶ 57.7% of the non-preregistered and 6.4% of the preregistered
studies are statistically significant
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Working example: Funnel plots
Non−preregistered studies

Hedges' g
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Results RE MA:
µ̂=0.402 (0.031)
CI=(0.342; 0.463)
z=13.098, p<.001

Results Egger's test:
z=9.892, p<.001

Preregistered studies
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Results RE MA:
µ̂=0.008 (0.020)
CI=(−0.031; 0.046)
z=0.396, p=.692

Results Egger's test:
z=1.272, p=.203
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Working example: Forest plot
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HYEMA

▶ HYEMA treats non-preregistered and preregistered studies
differently by using distinct likelihood functions

▶ Likelihood function of non-preregistered studies:
▶ PDF of truncated normal distribution
▶ Density of a study conditional on being (non)significant
▶ Density is computed differently depending on significance

▶ Correction for publication bias in non-preregistered studies →
significance is likely a criterion for publication

▶ Likelihood function of preregistered studies:
▶ PDF of normal distribution
▶ Assumption of no bias in preregistered studies
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HYEMA and its relation to other methods

▶ Ratio of preregistered studies determines the similarity between
results of HYEMA and traditional meta-analysis:
▶ Only preregistered studies → results coincide
▶ Only non-preregistered studies → results differ the most if

publication bias is present

▶ HYEMA is related to the hybrid method (van Aert et al., 2018)
and selection models (Hedges, 1984; Iyengar et al., 1988; van
Aert et al., 2024)
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Working example: Results

▶ Average effect size:

µ̂ (SE) (95% CI) H0: µ=0

RE MA 0.319 (0.026) (0.267;0.370) z=12.133, p<.001
PET-PEESE -0.211 (0.042) (-0.293;-0.129) t(234)=-5.080, p<.001

HYEMA 0.176 (0.032) (0.112;0.239) z=5.435, p<.001

▶ Between-study variance:

τ̂2 (SE) (95% CI) τ̂ H0: τ2=0

RE MA 0.118 (0.015) (0.102;0.171) 0.344 Q(235)=1022.133, p<.001
HYEMA 0.080 (0.012) (0.059;0.107) 0.283 LR=233.900, p<.001
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Simulation study: Design
▶ Hedges’ g effect sizes were simulated under the random-effects

model

▶ Preregistered and significant non-preregistered studies were
always published

▶ Nonsignificant non-preregistered studies were published with
probability 1 − pub → pub = 0; 0.5; 0.9; 1

▶ Simulation study was tailored to the working example:
▶ µ = 0.319; τ 2 = 0.118 → random-effects model
▶ µ = 0.176; τ 2 = 0.080 → HYEMA
▶ Number of preregistered and non-preregistered studies equal to

observed in meta-analysis

▶ Outcomes were bias, RMSE, and Type-I error/power
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Simulation study: Results
▶ Numbers in bold indicate the method with the least bias or

lowest RMSE

Bias µ RMSE µ

µ τ2 pub RE MA PET-PEESE HYEMA RE MA PET-PEESE HYEMA

0 -0.000 -0.004 0.000 0.026 0.083 0.037
0.5 0.083 0.044 0.000 0.087 0.092 0.037
0.9 0.229 0.083 0.001 0.230 0.112 0.0420.319 0.118

1 0.293 0.086 0.002 0.294 0.114 0.048

0 -0.000 -0.010 0.000 0.023 0.080 0.030
0.5 0.068 0.041 0.000 0.072 0.088 0.031
0.9 0.231 0.098 0.001 0.232 0.126 0.0360.176 0.080

1 0.335 0.087 0.002 0.335 0.132 0.043

▶ Conclusion: HYEMA has the lowest bias and least RMSE
when publication bias is present
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Simulation study: Results estimating τ 2

Bias τ 2 RMSE τ 2

µ τ 2 pub RE MA HYEMA RE MA HYEMA

0 -0.001 -0.001 0.015 0.015
0.5 -0.001 -0.001 0.015 0.015
0.9 -0.026 -0.001 0.030 0.0170.319 0.118

1 -0.046 -0.001 0.048 0.018

0 -0.001 -0.001 0.011 0.012
0.5 0.008 -0.001 0.014 0.011
0.9 -0.000 -0.001 0.012 0.0110.176 0.080

1 -0.023 -0.001 0.025 0.013

▶ Conclusion: Performance is comparable except for conditions
with extreme publication bias
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Simulation study: Results testing H0 : µ = 0
▶ Numbers in bold indicate the method that has a Type-I error

rate closest to α = 0.05

µ τ 2 pub RE MA PET-PEESE HYEMA

0 0.052 0.366 0.052
0.5 0.656 0.487 0.051
0.9 1.000 0.649 0.0520 0.118

1.0 1.000 0.530 0.056

0 0.049 0.347 0.048
0.5 0.554 0.464 0.054
0.9 1.000 0.649 0.0510 0.080

1.0 1.000 0.458 0.054

Conclusion:

▶ Type-I error rate is adequately controlled by HYEMA
▶ Statistical power of HYEMA was close to 1 for all conditions
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Discussion
▶ HYEMA seems to be a useful sensitivity analysis if

preregistered studies are available

▶ Results can be considered not robust if, for example,
▶ A significant effect is observed in the meta-analysis but not with

HYEMA
▶ There is a strong decrease in effect size estimate

▶ Also classifying replications as less likely to be biased than
non-preregistered studies → extra sensitivity analysis?!

▶ Moderator variables can be included in HYEMA

▶ Software:
▶ Web application: https://rcmvanaert.shinyapps.io/HYEMA/
▶ hybrid() function in the puniform R package
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Illustration hybrid() function
install.packages("puniform") # Install puniform package
library(puniform) # Load puniform package

hybrid(yi = yi, vi = vi, conventional = conventional, side = "right")

##
## Results Hybrid method (k = 236; number conventional studies = 189)
##
## Model results Hybrid method:
##
## est se ci.lb ci.ub zval pval
## 0.1758 0.0323 0.1124 0.2392 5.4355 <.001
##
## ===
##
## Estimating between-study variance:
##
## tau2 se tau2.lb tau2.ub LR pval
## 0.0802 0.0120 0.0594 0.1069 233.8997 <.001

▶ Including moderators:
hybrid(yi = yi, vi = vi, conventional = conventional, side = "right",

mods = ~ x)

15



Illustration hybrid() function
install.packages("puniform") # Install puniform package
library(puniform) # Load puniform package

hybrid(yi = yi, vi = vi, conventional = conventional, side = "right")

##
## Results Hybrid method (k = 236; number conventional studies = 189)
##
## Model results Hybrid method:
##
## est se ci.lb ci.ub zval pval
## 0.1758 0.0323 0.1124 0.2392 5.4355 <.001
##
## ===
##
## Estimating between-study variance:
##
## tau2 se tau2.lb tau2.ub LR pval
## 0.0802 0.0120 0.0594 0.1069 233.8997 <.001

▶ Including moderators:
hybrid(yi = yi, vi = vi, conventional = conventional, side = "right",

mods = ~ x)
15



Limitations/future research
▶ Simulations tailored to example(s)

▶ Only PET-PEESE was included in the simulations

▶ P-hacking may affect the performance of HYEMA

▶ Preregistered studies may also be biased
▶ Omit preregistered studies that are suspected to be biased
▶ Risk-of-bias assessment

▶ Examining properties of PET-PEESE with interaction term
(Stanley et al., 2012; Stanley et al., 2014) and extending
selection model approaches
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Thank you for your attention

www.robbievanaert.com

www.metaresearch.nl

Preprint:
van Aert, R. C. M. (2024). Meta-analyzing non-preregistered and
preregistered studies. Manuscript submitted for publication. doi:
10.31222/osf.io/2bj85
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Likelihood function non-preregistered study

LC (µ, τ2; yi , σ2
i , y cv

i ) =



1√
σ2

i + τ2
ϕ

( yi − µ√
σ2

i + τ2

)
1 − Φ

( y cv
i − µ√
σ2

i + τ2

) if pi ≤ α

1√
σ2

i + τ2
ϕ

( yi − µ√
σ2

i + τ2

)
Φ

( y cv
i − µ√
σ2

i + τ2

) if pi > α

▶ yi : observed effect size estimate
▶ σ2

i : within-study sampling variance
▶ yCV

i : critical value
▶ ϕ: PDF of standard normal distribution
▶ Φ: CDF of standard normal distribution
▶ pi : right-tailed p-value
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Likelihood functions

▶ Likelihood function of preregistered study:

LP(µ, τ2; yi , σ2
i ) = 1√

σ2
i + τ2

ϕ
( yi − µ√

σ2
i + τ2

)
.

▶ Combined likelihood function:

k∏
i=1

(
LC (µ, τ2; yi , σ2

i , y cv
i ) × 1i + LP(µ, τ2; yi , σ2

i ) × (1 − 1i)
)
,

▶ 1i : indicator function that is 1 for a non-preregistered study
and 0 for a preregistered study
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